
The Specification and Verified Decomposition of
System Requirements Using CSP

Andrew P. Moore
Code 5542, Naval Research Laboratory

Appears in IEEE Transactions on Software Engineering, Vol. 16, No. 9, Sept. 1990

Abstract - An important principle of building trustworthy systems is to rigorously analyze the
critical requirements early in the development process, even before starting system design.
Existing proof methods for systems of communicating processes focus on the bottom-up
composition of component-level specifications into system-level specifications. Trustworthy
system development requires, instead, the top-down derivation of component requirements from
the critical system requirements. This paper describes a formal method for decomposing the
requirements of a system into requirements of its component processes and a minimal, possibly
empty, set of synchronization requirements. The Trace Model of Hoare's Communicating
Sequential Processes (CSP) is the basis for the formal method. We apply the method to an
abstract voice transmitter and describe the role that the EHDM verification system plays in the
transmitter's decomposition. In combination with other verification techniques, we expect that
the method defined here will promote the development of more trustworthy systems.

Index Terms - Automated theorem proving, communicating processes, formal specification,
formal verification, process algebras, requirements definition, trusted systems, safety, security.

I. Introduction
A critical system is any system that can behave catastrophically. A critical requirement

of a system is any requirement that if not satisfied can result in catastrophic behavior. In
security-critical systems, a catastrophe might be the unauthorized disclosure of information; in
safety-critical systems, it might be the uncontrolled release of energy. Most critical systems
require an extremely high degree of assurance that they meet their critical requirements.1 In
combination with more conventional verification and validation techniques, formal methods
can help attain this increased level of assurance.

An important step in applying formal methods to the development of a trustworthy
system is to specify formally its critical requirements. Once these are specified and the design
process has begun, methods are needed to derive lower-level component requirements from
these critical requirements. Past work [1,2,3,4] suggests that process algebras, such as
Hoare's Communicating Sequential Processes (CSP) [5], facilitate the formal specification of
a system's critical requirements. Unfortunately, existing proof methods for these languages
focus on the bottom-up composition of component-level specifications into system-level
specifications, rather than a top-down derivation of component requirements from the
(critical) system requirements. With this in mind, we define a formal method for

1 Throughout this paper, a system is viewed as a network of communicating components (or component

processes). A system is considered trustworthy if there is an acceptably high probability that it satisfies all its
critical requirements.

- 2 -

decomposing requirements of a system into requirements of its component processes and a
minimal, possibly empty, set of synchronization requirements. CSP is the basis for
describing the functionality of systems; the Trace Model is the basis for reasoning about
properties of systems described in CSP[6,7].

The specification and decomposition of system requirements proceeds in successive
stages of refinement and proof. Figure 1 illustrates the three layers of specification required
for a decomposition. As shown in the highest layer, requirements may exist that cannot be
partitioned completely into requirements on an individual component; such requirements
involve the synchronized behavior of two or more components. Since these synchronization
requirements are typically more difficult to verify, the decomposition method promotes
reducing their number and complexity as far as possible. The set of these requirements is
minimal if, when each requirement is described in conjunctive normal form, each conjunct of
each requirement depends on the behavior of two or more components.

. . .

System

System

 Component Sync
Reqs

Requirements

Requirements

Architecture

Figure 1. System Requirement Decomposition

Section II of this paper compares our method with other methods based on similar
goals. Section III presents an overview of the relevant elements of the Trace Model of CSP,
extends the CSP notation to facilitate hierarchical decomposition, and refines the method
discussed above based on the model described. Section IV describes in detail the application
of the method to an abstract voice transmitter. Finally, Section V discusses the use of the
EHDM verification system [8,9] to check mechanically the integrity of the decomposition
process, both in general and as it was used in the decomposition of the voice transmitter.
General conclusions of this effort and plans for future research are also presented. Proofs in
the main body of the paper are written in the style used in [10], where justifications for each
proof step are provided as hints enclosed in curly brackets. The complete proofs of the
theorems used in this paper and the decomposition of the voice transmitter using EHDM are
documented in [11,12].

II. Comparison with Related Work
Hoare's work on CSP [5,13] and Milner's work on CCS [14,15] have provided the

basis for many of the methods described for the design and verification of concurrent
systems. Previous comparisons [6,16,17,18] characterize these methods by, among other
things, the model of concurrency used, the types of properties provable, and the structure of
systems specifiable. Due to the wealth of work done in this area we restrict our comparison
primarily to methods based on CSP. Rather than explicitly describing each method and

- 3 -

comparing it with our own, we describe how our method fits into the previously defined
characterizations. This provides an implicit comparison with much of the previous work in a
relatively short amount of space. We also compare our work with efforts to use traces for
the abstract description of software and with more recent work not included in the past
characterizations.

A. A Family of CSP Models
Olderog and Hoare [6] describe a family of increasingly sophisticated models for

communicating processes: the Counter Model [19,20], the Trace Model [7,21,22], the
Divergences Model, the Readiness Model [19,23], and the Failure Model [24,25,26].
Starting with the least sophisticated, the Counter Model involves the description of systems
using separate channel histories. This model is shown to deal adequately only with acyclic or
tree-like networks of processes. The Trace Model allows the description of arbitrary
networks of processes. Both the Counter Model and the Trace Model can specify safety
properties,2 but neither can deal adequately with diverging processes.3 The Divergences
Model suffices to reason about systems that may diverge. The Readiness and Failure Models
are required to reason about liveness in addition to safety. More recent work proposes the
use of algebraic equations, rather than traces, to describe and prove properties about CSP
[27].

Olderog and Hoare prove that the Trace Model is sufficient to reason about safety
properties of non-divergent cyclic networks of processes. We choose this model for
specifying and decomposing system requirements as a balance between its expressive power
and the complexities involved with its use. For example, the Counter Model makes it difficult
to specify certain relationships of values transmitted across different channels due to the fact
that channel histories are recorded separately. The Gypsy Verification Environment [28,29]
exhibits this same difficulty. Although useful for the verification of a variety of concurrent
applications, Gypsy has a number of limitations on the form of the specification and
implementation of concurrent programs. At the time this paper was written, it was very
difficult to specify exit conditions of the form "at the time a message is received over channel
A , the history of channel B (distinct from A) satisfies property P." The Trace Model
alleviates this problem by interleaving the individual channel histories in the order in which
the communications take place.

B. Characteristics of Trace-Driven Proof Systems
Hooman [17] and Barringer [18] describe a number of characteristics of proof

systems for networks of processes. They distinguish between proof systems based on
shared variables [17,30,31] versus those based on message passing, e.g., most systems
based on CSP. Our method requires specifically that the only way one process may
communicate with another process is through the transmission of messages over channels.
Hooman distinguishes between proof systems based on a posteriori verification [32,33]
versus verification as part of the design process [21,34,35]. Since the design and

2 Safety for concurrent processes corresponds to partial correctness for sequential programs. Intuitively, safety

properties specify that some condition does not occur whereas liveness properties specify that some condition
will occur.

3 A network of processes is non-divergent if all recursion is guarded and there is no possibility of the network
engaging in an infinite consecutive sequence of hidden events. Note that while all terminating processes are non-
divergent, not all non-divergent processes terminate.

- 4 -

implementation of nontrivial systems rarely, if ever, proceeds without error on the first
attempt, an interactive verification/development process is an important part of our method.

A proof system is compositional if it is possible to derive a specification of a system
from the specification of its components without knowledge of the component's internal
structure. The verify-while-develop paradigm of system development has led to the need for
compositional proof systems [21,30,34,35] versus non-compositional proof systems
[31,33]. We introduce a special compose operator to CSP allowing the description of a
process based solely on the external channels over which the process communicates. By
adapting proof rules from [5], a compositional proof method is defined similar to the
approach used by van de Snepscheut for the verification of hardware designs [10].
However, unlike previous work, our method emphasizes the decomposition of high-level
requirements, rather than the composition of low-level specifications.

In a slightly different vein, Bartussek and Parnas [36] and, more recently, Parnas and
Wang [37] describe the use of trace theory for the abstract specification of software modules.
Rather than reasoning about traces of communications, as does the Trace Model of CSP, this
work reasons about software using traces of procedure calls. McLean extended the original
work by providing a formal foundation for specifying software requirements using traces
[38] and defining the trace semantics of a simple sequential programming language [39].
This provides a general framework for specifying and verifying sequential program behavior.
In combination with the method described in this paper for decomposing system-level
requirements into component-level requirements, this framework may be useful for
specifying and verifying the critical requirements of concurrent software systems.

C. Applications to Critical Systems
McCullough [40] and Jacob [1] use trace-based methods to reason about the multi-

level security requirements of systems. McCullough introduces the notion of a composable
property as one that if proven of the components of a systems, is true of the system as a
whole. He derives a composable security property, called restrictiveness, and demonstrates
its use in constructing multi-level secure systems. Unfortunately, many critical requirements
of interest may not be composable and, therefore, are not subject to the methods McCullough
proposes. Composability applies only to systems composed of components similar enough
that the same critical requirements apply to all components and to the system as a whole. The
goal of our method is to tackle the more general problem of deriving component requirements
from arbitrary system requirements.

Jacob [1] demonstrates the expressive power of the Trace Model of CSP by
specifying complex multi-level security requirements of systems. In later work, Woodcock
[41] and Jacob [42] describe a method to derive an implementation from a specification not by
intelligently guessing, but rather under guidance from the structure of the specification.
Woodcock's approach requires stating a set of fairly low-level requirements and generating an
implementation consisting of a parallel composition of processes, each component of which
implements a requirement. Jacob discusses problems with a (possibly nonterminating)
method of generating more secure designs from less secure designs using Woodcock's basic
approach. Our method is different in that we are trying to derive low-level requirements from
a given high-level requirement and (partial) implementation. We do not assume that we have
the freedom to choose the implementation since that choice may depend on other

- 5 -

considerations, e.g., the required non-critical functionality of the system or the physical
realization of the system in hardware.

III. The Decomposition Method
This section describes an iterative seven-step method for decomposing system

requirements.4 We present an overview of relevant elements of the CSP Trace Model and
describe a (primarily syntactic) extension for constructing systems in a hierarchical manner.
In the course of this discussion, three rules are introduced that are used to justify the
definition of the method. We use standard notation where possible and describe CSP-specific
notation when first used. We assume universal quantification of variables in formulas unless
otherwise indicated. Readers interested in a summary of the notation used or other details of
CSP not covered in this paper should refer to [5].

A. CSP Preliminaries
A CSP process communicates with its environment through named communication

channels. The Trace Model of CSP maps a process to an alphabet and a set of traces. The
alphabet of a process P, denoted aP, specifies all events in which P is permitted to engage.
A trace of a process is an observation of its execution. It consists of a finite sequence of
events in which the process has engaged at some moment in time. The set of all traces of a
process P, denoted traces(P), is a prefix-closed nonempty subset of aP*, where aP* is the

set of all finite traces formed from events in aP.5

The CSP notation allows the description of processes using a variety of process
constructors. This paper primarily deals with the commutative concurrency operator, ||. P ||
Q describes a process executing process P concurrently with process Q. P || Q requires P and
Q to participate simultaneously in those events that occur in both aP and aQ. Events

occurring in aP but not aQ may be engaged in by P independently of Q. Since either process
of a concurrent composition may itself be a concurrent process, this operator supports the
description of arbitrary networks of processes.

Processes executing concurrently communicate through channels. A communication
event is a special type of event described by a pair c.v. The alphabet of process P contains
c.v if and only if P is permitted to communicate message v over channel c. c ! v denotes the
output of value v on the channel c; c ? m denotes the input of any value m communicable on
the channel c. These operations are communication events defined by

Definition 1: (c ! v ® P) = (c.v ® P)

Definition 2: (c ? m ® P(m)) = (c.n:aP ® P(n)))

where the prefix process e ® P describes a process that first engages in the event e and then

behaves like process P; and the choice process x:A ® P(x) describes a process that chooses x
from A then behaves like P(x). Although the CSP notation distinguishes between the input

4 Henceforth, the term requirement refers to the statement of a property. The term specification refers to the

statement that a system, or process, satisfies some property.
5 Traces(P) must be prefix-closed since every prefix of an observation of P must also be an observation of P. The set

is nonempty since the empty trace is a valid observation of every process.

- 6 -

and output of values over channels, the Trace Model uses only the generic dot notation, c.v,
to represent communications over channels. For example,

traces(c ! v ® P) = {< >} È {<c.v> ^ t | t Î traces(P)}

where ^ is the trace append operation.
A communication of message m over channel c can occur between two processes

running concurrently if and only if both processes have the communication event c.m in their
alphabets and both processes simultaneously engage in that event. That is, whenever one
process outputs a value onto the channel, the other process simultaneously inputs the same
value from the channel.6 This implies that

Definition 3: ((c ! v ® P) || (c ? m ® Q(m))) = (c.v ® P || Q(v))

where c.v occurs in aP and aQ. If only one process in a system has a communication event
in its alphabet, then that process may engage in that event independently of any other process.
To simplify the theory involved, Hoare assumes that at most two processes in a system can
access the same communication channel and that communication over a channel occurs in
only one direction. If only one process within the system can access the channel, the channel
is said to be external; if two processes can access the channel, the channel is said to be
internal.

A requirement in CSP is viewed as a set of traces. Process P satisfies a requirement
R, denoted P sat R, if and only if R contains every trace that may occur as an observation of
P:

Definition 4: (P sat R) = (traces(P) Í R).

Clearly, a requirement is satisfiable by some process only if it contains a non-empty prefix-
closed subset. For convenience we define a functional notation for requirements

Definition 5: R(tr1) = (tr1 Î R)

and a predicate ValidTrace as

Definition 6: ValidTrace(tr1, P) = (tr1 Î traces(P)).

Then, trivially,

Lemma 1: (P sat R) iff "tr1. (ValidTrace(tr1, P) Þ R(tr1)).

B. Concurrent Processes and Hiding
The Trace Model requires relating each process to an alphabet and a set of traces.

Since our goal is to decompose the requirements of a system as far as possible into
requirements of its components, it is helpful to define the alphabet and set of traces of a
concurrent process in terms of its component processes. Clearly,

Definition 7: a(P || Q) = aP È aQ.

The valid traces of a concurrent process are defined as

6 To account for the time it takes to transmit information over physical wires we can associate with each interface

between two processes an additional process that delays transmissions for some length of time. For ease of
exposition, this paper does not consider issues regarding transmission delay; for details see [12].

- 7 -

Definition 8: ValidTrace(tr1, P || Q) = (ValidTrace(tr1 | ̀aP, P)
 Ù ValidTrace(tr1 | ̀aQ, Q)
 Ù tr1 Î (aP È aQ)*),

where the restriction operator, | ,̀ takes a trace and a set of events and returns the trace with the
elements not in the set removed. Hoare justifies Definition 8 by arguing that if tr1 Î traces(P

|| Q), then every event of tr1 must be an element of either aP or aQ. For every event e in tr1,

e Î aP if and only if e occurs in the trace of P. Likewise, for every event e in tr1, e Î aQ if

and only if e occurs in the trace of Q. Therefore, (tr1 | ̀aP) Î traces(P) and (tr1 | ̀aQ) Î

traces(Q). Definition 7 suggests that tr1 must be an element of (aP È aQ)*.
Definition 8 requires that any trace of a concurrent process P || Q include every event

in which P or Q engage. The visibility of the communications over internal channels in the
traces of P || Q reduces the amount of abstraction possible during the system design process.
Hierarchical design, a proven method for managing the complexity of system design and
verification, requires that the specification of a component be based solely on the sequence of
external communications in which it may engage. To support this, we define the compose
operator, denoted |\|, equivalent to the CSP concurrency operator except that the internal
communications are hidden; consequently,

Definition 9: a(P |\| Q) = (aP ¸ aQ)

where (aP ¸ aQ) = (aP È aQ) - (aP Ç aQ). Further, we define a new operator, , which
extends the definition of | ̀to operate on sets of traces, as

Definition 10: A S = {t | $t'. (t' Î A) Ù (t' | ̀S = t)}.

This extension allows the definition of the traces of P |\| Q in terms of the traces of P || Q as

Definition 11: traces(P |\| Q) = (traces(P || Q) (aP ¸ aQ)).

Concealing communication over internal channels in this way is equivalent to that
accomplished by the trace blend operation defined in [10].

Clearly from the above definitions, the alphabet and traces of a compose process
contain only the external communication events in which the process may engage. Thus,
each valid trace of a compose process corresponds to some valid trace of the related
concurrent process as follows:

Rule 1: ValidTrace(tr1, P |\| Q)
 Þ $tr2. (ValidTrace(tr2, P || Q)

 Ù tr1 = (tr2 | ̀ (a P ¸ a Q)))

Proof:
 ValidTrace(tr1, P |\| Q)
= {Definition 6}
 tr1 Î traces(P |\| Q)
= {Definition 11}
 tr1 Î traces(P || Q) (aP ¸ aQ)
= {Definition 10}
 tr1 Î {t | $ tr2. (tr2 Î traces(P || Q) Ù t = (tr2 | ̀(aP ¸ aQ)))}

- 8 -

® {Definition 6}
 $ tr2. (ValidTrace(tr2, P || Q) Ù tr1 = (tr2 | ̀(aP ¸ aQ)))
End of Proof.

Note that the compose operator is just a convenient notation for what could be defined using
concealment in Hoare's CSP. For example,

(P |\| Q) = ((P || Q) \ (aP Ç aQ))

where the CSP concealment operator, \, is used to hide all communications over internal
channels.

As mentioned previously, use of the Trace Model requires showing that the
application of interest is non-divergent. Divergence arises from unguarded recursion. A
recursion of the form mP.F(P) is guarded if F(P) starts with at least one event prefixed to all
recursive occurrences of P. Divergence can also arise from the hiding of events as is
accomplished through the use of the compose operator. Any process that can engage in an
infinite consecutive sequence of hidden events is divergent. In the case of a compose
process, divergence leads to infinite internal chatter. Hoare defines a theory for reasoning
about divergent processes. From this theory we have defined a method for stating
requirements on component processes sufficient to guarantee non-divergence of a system
[12]. This is a fairly mechanical process and is performed in isolation from the requirement
decomposition process; we, therefore, do not further consider issues of divergence in this
paper.

C. Decomposing System Requirements
We are now able to state and prove the primary inference rules for decomposing

requirements of a compose process. The first reduces the problem of proving requirements
of a compose process to proving requirements of a concurrent process:

Rule 2: ((P || Q) sat R
 Ù " tr1. (ValidTrace(tr1, P |\| Q)

 Þ $ tr2. (ValidTrace(tr2, P || Q)
 Ù (tr1 = tr2 | ̀(aP ¸ aQ))
 Ù (R(tr2) Þ R(tr2 | ̀(aP ¸ aQ))))))

 Þ (P |\| Q) sat R
Proof:
 (P || Q) sat R
 Ù " tr1. (ValidTrace(tr1, P |\| Q)

 Þ $ tr2. (ValidTrace(tr2, P || Q)
 Ù (tr1 = tr2 | ̀(aP ¸ aQ))
 Ù (R(tr2) Þ R(tr2 | ̀(aP ¸ aQ)))))

® {Lemma 1}
 " tr1. (ValidTrace(tr1, P |\| Q)
 Þ $ tr2. (R(tr2) Ù (tr1 = tr2 | ̀(aP ¸ aQ))

 Ù (R(tr2) Þ R(tr2 | ̀(aP ¸ aQ)))))
= {Lemma 1}
 (P |\| Q) sat R
End of Proof.

- 9 -

The hypothesis of this rule requires proving properties about the requirements of a concurrent
process. The following inference rule reduces the problem of proving requirements of a
concurrent process to proving requirements of its components:

Rule 3: ((P sat S) Ù (Q sat R)
 Ù " tr1. (ValidTrace(tr1, P || Q)

 Þ ((S(tr1 | ̀aP) Þ S(tr1)) Ù (R(tr1 | àQ) Þ R(tr1))
 Ù ((S(tr1) Ù R(tr1)) Þ T(tr1)))))

 Þ (P || Q) sat T
Proof:
 (P sat S) Ù (Q sat R)
 Ù " tr1. (ValidTrace(tr1, P || Q)

 Þ ((S(tr1 | ̀aP) Þ S(tr1)) Ù (R(tr1 | àQ) Þ R(tr1))
Ù ((S(tr1) Ù R(tr1)) Þ T(tr1))))

® {Definition 8}
 " tr1. ValidTrace(tr1, P || Q)
 Þ (ValidTrace (tr1 | ̀aP, P) Ù ValidTrace(tr1 | ̀aQ, Q)
 Ù (P sat S) Ù (Q sat R) Ù (S(tr1 | ̀aP) Þ S(tr1))

 Ù (R(tr1 | àQ) Þ R(tr1)) Ù ((S(tr1) Ù R(tr1)) Þ T(tr1)))
® {Lemma 1}
 " tr1. ValidTrace(tr1, P || Q)
 Þ (S(tr1 | ̀aP) Ù R(tr1 | ̀aQ) Ù (S(tr1 | ̀aP) Þ S(tr1))
 Ù (R(tr1 | àQ) Þ R(tr1)) Ù ((S(tr1) Ù R(tr1)) Þ T(tr1)))
= {Lemma 1}
 (P || Q) sat T
End of Proof.

Rules 1, 2, and 3 form the basis of our method for decomposing system
requirements. Although relatively easy to prove, they encompass the conditions sufficient for
justifying the method. The following describes and justifies the method using these rules:

1. Describe the architecture of the system as a composition of processes that can be arranged
in a binary tree Pi,j, for 0 £ i < n and 0 £ j < 2n-1. Define the alphabet of the system as the
set of external communication channels, and only those communication channels, over
which the system is permitted to communicate.

This step requires describing, as a binary tree, that part of the system architecture of
interest.7 Each non-leaf vertex of the tree is a process representing the composition of its left
son and its right son. Therefore, each subtree represents a subsystem of the entire system.
The root of the tree, P0,0, represents the system as a whole. The tree need not be complete,8

but if a vertex has one son then it must have both sons. Later refinement of the architecture

7 Arranging the processes in the form of a binary tree is done solely for the purpose of easing the statement of the

method. This method is applicable to any network of communicating processes that is constructed with
unidirectional two-process channels.

8 The binary tree Pi,j is complete if every vertex of depth less than n-1 has both a left son and a right son, and every
vertex of depth n-1 is a leaf. The depth of a vertex v is the length of the path from the root to v.

- 10 -

specified in this step requires the straightforward application of Steps 1 through 7 to the new
part of the architecture.
2. Specify the necessary requirements of the system in the form P0,0 sat R0,0.

The system specification is stated as a requirement R0,0 of P0,0. Subsequent
decomposition will result in a requirement Ri,j for each process Pi,j of the system.

® For 0 £ i < n and 0 £ j < 2n-1, let SRi,j be the derived synchronization requirement for
Pi,j, defined as true initially.9 Traverse the tree in a breadth-first manner. At each non-
leaf vertex Pi,j, perform the following steps:

3. Define the alphabets of Pi+1,2j
 and Pi+1,2j+1. Reduce the specification of the compose

process Pi,j to the specification of the concurrent process (Pi+1,2j
 || Pi+1,2j+1) by proving the

Compose Restriction Condition,

Ri,j(tr1) Þ Ri,j (tr1 | ̀aPi,j).

Definition 9 requires that the alphabets of the sons of Pi,j, Pi+1,2j and Pi+1,2j+1,be
defined such that their symmetric set difference equals the alphabet of Pi,j. Under these
restrictions, Pi,j sat Ri,j follows from the conditions

1. (Pi+1,2j || Pi+1,2j+1) sat Ri,j
2. " tr1. ValidTrace(tr1, Pi+1,2j |\| Pi+1,2j+1)

 Þ $tr2.(ValidTrace(tr2, Pi+1,2j || Pi+1,2j+1)
 Ù tr1 = (tr2 | ̀(aPi+1,2j ¸ aPi+1,2j+1))
 Ù (Ri,j (tr2) Þ Ri,j (tr2 | ̀(aPi+1,2j ¸ aPi+1,2j+1))))

by Rule 2. The second condition follows from Rule 1 and the proof of the Compose
Restriction Condition. The first will be decomposed in subsequent steps. In this, and
subsequent steps, we require proof of stronger conditions than necessary, e.g., the Compose
Restriction Condition, so as to proceed without any specific knowledge about the valid traces
of the concurrent process Pi+1,2j

 || Pi+1,2j+1. Requirements that depend on such knowledge,
referred to as synchronization requirements, will be included in SRi,j in Step 7.

4. Derive requirements Ri+1,2j for Pi+1,2j
 and Ri+1,2j+1

 for Pi+1,2j+1 with the goal of proving
Pi+1,2j || Pi+1,2j+1 satisfies Ri,j.

This is the first attempt to determine requirements for the components Pi+1,2j and
Pi+1,2j+1. This is the most important, and often the most difficult, step in the decomposition
process; the better the determination made here, the less work that is required in subsequent
steps. It is important to make the requirements as weak as possible. Although finding the
weakest requirements may be difficult, the weaker the requirements found, the less that will
be required of Pi+1,2j and Pi+1,2j+1 to satisfy Ri,j. This maximizes the amount of freedom in the
design and implementation of the components while still meeting the system-level
requirements defined.

5. Prove the Concurrent Restriction Condition,

9 At the completion of this method the combination of the synchronization requirements SRi,j forms the minimal set

of synchronization requirements discussed in the introduction.

- 11 -

Ri+1,2j (tr1 | ̀aPi+1,2j) Þ Ri+1,2j(tr1)
Ù R i+1,2 j+1 (tr1 | ̀ aP i+1 ,2 j+1) Þ R i+1 ,2 j+1(t r1) .

If this proof fails, revise the requirements so that Ri+1,2j depends only on the events in the
alphabet of Pi+1,2j and that Ri+1,2j+1 depends only on events in the alphabet of Pi+1,2j+1 and
try again.

Once the component requirements are formulated, application of Rule 3 requires
proving the condition

ValidTrace(tr1, Pi+1,2j || Pi+1,2j+1)
Þ (Ri+1,2j (tr1 | ̀aPi+1,2j) Þ Ri+1,2j(tr1)
 Ù Ri+1,2j+1 (tr1 | ̀aPi+1,2j+1) Þ Ri+1,2j+1(tr1)).

Proof of the Concurrent Restriction Condition is sufficient, though not necessary, to prove
this requirement. If it cannot be proven, Ri+1,2j

 must be restricted so as to be independent of

the events outside of aPi+1,2j, and Ri+1,2j+1
 must be restricted so as to be independent of the

events outside of aPi+1,2j+1.

6. Attempt to prove the Conjunction Condition,
(Ri+1,2j (tr1) Ù Ri+1,2j+1(tr1)) Þ Ri,j(tr1).

If successful, continue the tree traversal to the next vertex at step 3. Otherwise, specify the
weakest condition, C, needed to complete the proof.

Application of Rule 3 requires proving that

ValidTrace(tr1, Pi+1,2j || Pi+1,2j+1)
Þ ((Ri+1,2j (tr1) Ù Ri+1,2j+1(tr1)) Þ Ri,j(tr1)).

Proof of the Conjunction Condition is sufficient to satisfy this requirement. If it is provable,
the decomposition at the current vertex is complete; in this case, Pi,j sat Ri,j provided that Pi+1,2j
sat Ri+1,2j and Pi+1,2j+1 sat Ri+1,2j+1. Otherwise, Step 7 requires deriving a condition that
allows completion of the proof. As in step 4, the weaker the condition found, the less that
will be required of Pi+1,2j and Pi+1,2j+1 to satisfy Ri,j. The weakest condition must be found in
order to guarantee the minimization of the set of synchronization requirements.

7. Describe C as a conjunction of simple conditions in conjunctive normal form. If no
conjunct depends solely on the traces of either Pi+1,2j

 or Pi+1,2j+1
 then conjoin C to SRi,j and

continue the tree traversal to the next vertex at step 3. Otherwise, conjoin to Ri+1,k each
conjunct of C that depends only on the traces of Pi+1,k (for k = 2j or k = 2j+1) and
continue at step 5.

Requirements that depend solely on the behavior of one component process are
integrated into that process's specification whenever possible. Describing C as a conjunction
of conditions, each captured in the simplest possible context, helps ensure that no requirement
exists that could be stated as part of the specification of one of the component processes.
This, in turn, maximizes the benefit gained from the decomposition process by minimizing
the number and complexity of the synchronization requirements. Those requirements that
depend on two or more component processes depend on specific knowledge about the valid
traces of the concurrent process and are added to SRi,j.

- 12 -

D. Assumptions
The above method reduces the problem of formally verifying the requirements of a

concurrent system into two separate, simpler problems: verifying that the system components
meet their derived requirements and verifying that specific combinations of those components
meet any derived synchronization requirements. Of course, the eventual implementation of
the components of the system and their interconnections must be shown to satisfy the
assumptions of the Trace Model of CSP on which our method depends. In summary, these
are as follows:

1. The only way a process can communicate with another process executing concurrently is
through CSP-like communication channels; no shared variables are permitted.

2. Exactly those external communication channels over which a process may pass data are
included in its alphabet.

3. At most two processes of a system may communicate over a given channel; no broadcast
capability exists. If the channel is external, exactly one process in the system must have
the communication events associated with that channel in its alphabet. If the channel is
internal, exactly two processes must have the communication events associated with that
channel in their alphabets.

4. Communication over a given channel may take place in one direction only.
5. Any assumptions made of the communication media, e.g., in the definition of a

transmission delay, must be validated.

Assuring the validity of these assumptions must take place throughout system development.

IV. An Example Decomposition
This section presents a description of the verified decomposition of an abstract voice

transmitter using, as a guide, the iterative seven-step method discussed in Section III. The
example, called the mASVT, is a simplified version of a voice terminal specified previously
[2]. Although the notation Pi,j for processes, Ri,j for component requirements, and SRi,j for
synchronization requirements is convenient for describing the method for an arbitrary
application, for a specific application this notation is cumbersome. Throughout the
specification and decomposition of the mASVT, we use mnemonic names for processes so

that, for example, the requirements for the process mASVT are RmASVT and SRmASVT.

A. The mASVT: An Informal Description

The mASVT allows for the encrypted or plain text transmission of voice. It consists
of three major components - the Voice Processor, the Modem Processor, and the Comsec
Module. Figure 2 illustrates the two external interfaces, Red Channel and Black Channel,
and the three internal interfaces, Voice Modem, Voice Comsec, and Modem Comsec, through
which voice transmissions may flow. The Red and the Black Channels are both analog
interfaces. Conceptually, the Red Channel may be connected to telephone sets or intercoms;
the Black Channel may be connected to radios or wireline appliques.

- 13 -

 Modem
 Processor

Voice
Processor

 Comsec
 ModuleRed

Channel

Voice
Modem

Voice
Comsec

encrypt

analyze modulate

control panel

plain cipher

Black
Channel

Modem
Comsec

Figure 2. The mASVT

The mASVT has a control panel allowing its users to choose between the cipher or the
plain mode of operation. When in the cipher mode, the Voice Processor analyzes outgoing
transmissions, the Comsec Module encrypts these transmissions, and the Modem Processor
codes important bits and modulates the resulting bit stream. Transmissions in the plain mode
are processed similarly except that the Comsec Module is bypassed so that information is
transmitted through the Voice Modem channel without being encrypted. The terminal must be
clear of all voice transmissions before a user may change the status of the control panel. The
key used for encryption is pre-defined by the system and never changes. A user can receive
transmissions from the mASVT only if he has access to a receiver that inverts the
transformation performed by the terminal. This, of course, requires access to the decryption
key. The details of the mASVT transformations have little or no bearing on the statement of
its requirements and for ease of exposition are omitted.

The mASVT has one critical requirement, Red/Black Separation. More specifically,
all information transmitted by the terminal when in the cipher mode of operation must be
Black, encrypted, data. Thus, the only way for the mASVT to transmit Red, plain text, data
is when the control panel is set in the plain mode. Because of its restricted functionality, the
mASVT serves only as a demonstration of the method discussed in this paper - it is not
intended as a real-world system. The practicality of this method and its demonstration on real
systems is a topic of future research.

B. Specifying mASVT Architecture and Requirements

1. Describe the architecture of the mASVT as a composition of processes that can be
arranged in a binary tree Pi,j, for 0 £ i < n and 0 £ j < 2n-1. Define the alphabet of the

mASVT as the set of external communication channels, and only those communication

channels, over which the mASVT is permitted to communicate.

- 14 -

The mASVT is described as the composition of three CSP processes, VP representing
the Voice Processor, CM representing the Comsec Module, and MP representing the Modem
Processor. Let mASVT be the CSP process representing the terminal as a whole. Then,

Definition 12: mASVT = (VP |\| (CM |\| MP)).

Figure 3 illustrates the mASVT architecture as a binary tree of processes. This view requires
that we introduce a new process name CMP, for Comsec Modem Processor, representing the
composition of CM and MP.

mASVT (P)0,0

VP (P) CMP (P)

CM (P) MP (P)

 1,0 1,1

 2,2 2,3

Figure 3. mASVT Architecture

Define M to be the set of all possible messages communicable over the message
channels. The alphabet of the mASVT is defined to be those communication events in which
it is permitted to engage at its external interface:

Definition 13: amASVT = {VPCtl.c, RedChan.m, BlackChan.m
 | c Î {cipher, plain}, m Î M}.

The message channels referenced here correspond to the external channels described in the
informal description. VPCtl is a control channel that notifies the mASVT of an input from the
control panel; these inputs can be either cipher or plain signifying whether the terminal is in
cipher mode or plain mode.

2. Specify the necessary requirements of the system in the form mASVT sat RmASVT.

Specifying the mASVT's critical requirement, Red/Black Separation, requires that
every message transmitted while in the cipher mode of operation be encrypted.10 The
Restriction operator, | ,̀ provides a mechanism for specifying properties about the values
transmitted over particular channels in isolation from other communications. Specifying
Red/Black separation requires a mechanism stronger than this to determine, given an arbitrary
trace, the sequence of values communicated over a channel when in the cipher mode of
operation. We define an abstract mechanism for doing this since it will be useful in the
specification of the components as well as the mASVT. The mechanism is based on a
function Filter,

10 Note that no attempt is made to formally specify or decompose the non-critical functionality requirements in this

paper.

- 15 -

Definition 14: Filter(tr1,set1,req1)
 = if tr1 = < > then < >
 elsif Last(tr1) Î set1 Ù req1(NonLast(tr1))
 then Append(Last(tr1),

 Filter(NonLast(tr1),set1,req1))
 else Filter(NonLast(tr1),set1,req1),

where < > denotes the empty sequence, Last returns the last element of a sequence, NonLast
returns all but the last element of a sequence, and Append appends an element to the end of a
sequence. Intuitively, Filter returns the sequence of elements of trace tr1 that are in set set1
such that the sequence of events leading up to each element satisfies requirement req1.
 To use Filter, we define a function, CipherMode, that determines whether the terminal is in
the cipher mode after an arbitrary sequence of communications takes place,

Definition 15: CipherMode(ctlch1)(tr1)
 = if tr1 = < > then (InitialMode = cipher)
 elsif Last(tr1) = ctlch1.c then (c=cipher)
 else CipherMode(ctlch1)(NonLast(tr1)),

where InitialMode is the position of the control panel on start-up and ctlch1 is the control
channel over which the cipher/plain mode signals are sent. Now, if ch1:M denotes the set of
all communications of values in M over channel ch1,

Filter(tr1, ch1:M, CipherMode(ctlch1))

returns the sequence of communications over ch1 that occur in tr1 either (1) when the last
value sent over control channel ctlch1 was cipher, or (2) if there is no such value, when
InitialMode is cipher.

Red/Black separation requires that every message output over BlackChan correspond
to the proper transformation, including an encryption, of a message input over RedChan. Let
Key be the key used by the mASVT for encryption of voice and the functions Analyze,
Encrypt, and Modulate be the functions representing the transformations performed by the
Voice Processor, Comsec Module, and Modem Processor, respectively. Using the Filter
function as described above, Red/Black separation is captured in the specification of the
mASVT:

Specification 1: mASVT sat RmASVT

RmASVT(tr1)

 = " m1.(BlackChan.m1 in Filter(tr1,BlackChan:M,
 CipherMode(VPCtl))

 Þ $ m2.(RedChan.m2 in Filter(tr1,RedChan:M,
 CipherMode(VPCtl))

 Ù Modulate(Encrypt(Analyze(m2),Key)) = m1)),

where in is the sequence membership symbol.

C. Decomposing mASVT Requirements: The First Attempt

The top level CSP specification of the mASVT composes VP with (CM |\| MP).
Although a full analysis requires a complete traversal of the tree illustrated in Figure 3, the

- 16 -

following describes only the decomposition of mASVT into two components, VP and CMP,
where

Definition 16: CMP = (CM |\| MP);

the decomposition of CMP proceeds similarly. Section IV-E describes the final results of the
full decomposition of the mASVT. The appendix to this paper presents an example CSP
implementation of VP, CM, and MP.

3. Define the alphabets of VP and CMP. Reduce the specification of the compose process
mASVT to the specification of the concurrent process (VP || CMP) by proving the
Compose Restriction Condition,

RmASVT(tr1) Þ RmASVT(tr1 | ̀amASVT).

The alphabets of the mASVT component processes are defined as

Definitions 17:
 aVP = {VPCtl.c, CMCtl.c, RedChan.m, VoiceComsec.m,

 VoiceModem.m | c Î {cipher, plain}, m Î M},
 aCM = {CMCtl.c, MPCtl.c, VoiceComsec.m,

 ModemComsec.m | c Î {cipher, plain}, m Î M},and
 aMP = {MPCtl.c, BlackChan.m, ModemComsec.m,

 VoiceModem.m | c Î {cipher, plain}, m Î M}.

CM is notified of changes in the control panel by VP through the CMCtl channel. Likewise,
MP is notified of changes in the control panel by CM through the MPCtl channel. The
alphabet of CMP follows from Definition 9 and Definitions 17,

Lemma 2: aCMP = (aCM ¸ aMP).

The CSP process architecture for the mASVT is shown in Figure 4.

VoiceModem BlackChan

V
oiceC

om
sec

RedChan

M
od

em
C

om
se

c

VPCtl
MPVP

CM

C
M

C
tl M

PC
tl

Figure 4. mASVT CSP Architecture

Proof of the Compose Restriction Condition requires showing that the truth of RmASVT

depends only on the occurrence of events in mASVT's alphabet. Towards this goal, let £ be

the trace prefix relation such that, for example, tr2 £ tr1 states that tr2 is a prefix of tr1. The
following lemma states sufficient conditions for proving that the value returned by Filter
depends only on some restricted set of events:

- 17 -

Lemma 3: ((set1 Í set2
 Ù (" tr2. tr2 £ tr1 Þ req1(tr2) = req1(tr2 |̀ set2)))
 Þ Filter(tr1 | ̀set2,set1,req1) = Filter(tr1,set1,req1))

Proof: {by mathematical induction on the length of tr1}
Base Case: {definition of | }̀
 Filter(< > | ̀set2, set1, req1) = Filter(< >, set1, req1))
Induction Step:
 tr1 | ̀< > Ù set1 Í set2
 Ù (" tr2. tr2 £ tr1 Þ (req1(tr2) = req1(tr2 | ̀set2)))
 Ù (" tr2. tr2 £ NonLast(tr1) Þ (req1(tr2) = req1(tr2 | ̀set2)))
 Þ Filter(NonLast(tr1) | ̀set2, set1, req1)
 = Filter(NonLast(tr1), set1, req1))
 ® {Calculus}
 tr1 | ̀< > Ù set1 Í set2
 Ù (" tr2. tr2 £ NonLast(tr1) Þ req1(tr2) = req1(tr2 | ̀set2))
 Ù Filter(NonLast(tr1) | ̀set2, set1, req1)
 = Filter(NonLast(tr1), set1, req1)
 Case: Last(tr1) Î set2 {definition of | }̀
 (tr1 | ̀< > Ù req1(NonLast(tr1)) = req1(NonLast(tr1) | ̀set2)
 Ù Filter(NonLast(tr1 | ̀set2), set1, req1)
 = Filter(NonLast(tr1), set1, req1))
 ® {Definition 14 of Filter}
 Filter(tr1 | ̀set2, set1, req1) = Filter(tr1, set1, req1)
 Case: Last(tr1) Ï set2 {definition of | }̀
 tr1 | ̀< >
 Ù Filter(tr1 | ̀set2,set1,req1)= Filter(NonLast(tr1),set1,req1)
 ® {Definition 14 of Filter}
 Filter(tr1 | ̀set2, set1, req1) = Filter(tr1, set1, req1)
End of Proof.

Since the only place that tr1 is referenced in Specification 1 of RmASVT is as a
parameter to Filter, the Compose Restriction Condition follows from Theorem 1 below. We
state and prove this theorem after proving a useful lemma.

Lemma 4: {ctlch1.cipher, ctlch1.plain} Í set1
 Þ CipherMode(ctlch1)(tr1 | ̀set1)

= CipherMode(ctlch1)(tr1)

Proof {mathematical induction on the length of tr1}
Base Case: {definition of | }̀
CipherMode(ctlch1)(< > | ̀set1) = CipherMode(ctlch1)(< >)
Induction Step:
 tr1 | ̀< > Ù {ctlch1.cipher, ctlch1.plain} Í1
 Ù CipherMode(ctlch1)(NonLast(tr1) | ̀set1)
 = CipherMode(ctlch1)(NonLast(tr1))

- 18 -

 Case: Last(tr1) Î {ctlch1.cipher, ctlch1.plain}
 {Definition 15 of CipherMode}

 CipherMode(ctlch1)(tr1 | ̀set1) = CipherMode(ctlch1)(tr1)
 Case: Last(tr1) Î set1

 Ù Last(tr1) Ï {ctlch1.cipher,ctlch1.plain}
 {definition of | }̀

 tr1 | ̀< > Ù (CipherMode(ctlch1)(NonLast(tr1 | ̀set1))
= CipherMode(ctlch1)(NonLast(tr1)))

 = {Definition 15 of CipherMode}
 CipherMode(ctlch1)(tr1 | ̀set1) = CipherMode(ctlch1)(tr1)
 Case: Last(tr1) Ï set1

 Ù Last(tr1) Ï {ctlch1.cipher,ctlch1.plain}
 {definition of | }̀

 tr1 | ̀< > Ù (CipherMode(ctlch1)(tr1 | ̀set1)
 = CipherMode(ctlch1)(NonLast(tr1)))

 = {Definition 15 of CipherMode}
 CipherMode(ctlch1)(tr1 | ̀set1) = CipherMode(ctlch1)(tr1)
End of Proof.

Theorem 1:
 (Filter(tr1, BlackChan:M, CipherMode(VPCtl))

= Filter(tr1 | ̀amASVT, BlackChan:M, CipherMode(VPCtl)))
 Ù (Filter(tr1,RedChan:M, CipherMode(VPCtl))

= Filter(tr1 | ̀amASVT, RedChan:M, CipherMode(VPCtl)))

Proof: We prove the first conjunct; the proof of the second conjunct proceeds similarly. By
Lemma 3,
 (BlackChan:M Í amASVT
 Ù (" tr2. tr2 £ tr1 Þ (CipherMode(VPCtl)(tr2)

 = CipherMode(VPCtl)(tr2 | ̀amASVT))))
 Þ Filter(tr1 | ̀amASVT, BlackChan:M, CipherMode(VPCtl))

= Filter(tr1, BlackChan:M, CipherMode(VPCtl))
® {Definition 13 of amASVT, Lemma 4}
 Filter(tr1 | ̀amASVT, BlackChan:M, CipherMode(VPCtl))
 = Filter(tr1, BlackChan:M, CipherMode(VPCtl))
End of Proof.

4. Derive requirements RVP for VP and RCMP
 for CMP with the goal of proving VP || CMP

satisfies RmASVT.

RmASVT states that every message transmitted by the terminal when in the cipher mode
is a proper transformation of some message received by the terminal. A natural requirement
decomposition is to require that, when in the cipher mode, every message transmitted by a
component be a proper transformation of some message received by the component. A
proper transformation for VP is to Analyze the message; a proper transformation for CMP is
to Encrypt, using the encryption key Key, and then Modulate the message. This suggests the
following specifications for VP and CMP, respectively:

- 19 -

Specification 2: VP sat RVP

RVP(tr1) = " m1. (VoiceComsec.m1 in Filter(tr1, VoiceComsec:M,

 CipherMode(VPCtl))
 Þ $ m2.(RedChan.m2 in Filter(tr1, RedChan:M,

 CipherMode(VPCtl))
 Ù Analyze(m2) = m1))

Specification 3: CMP sat RCMP

RCMP(tr1) = " m1.(BlackChan.m1 in Filter(tr1, BlackChan:M,CipherMode(CMCtl))

 Þ $m2.(VoiceComsec.m2 in Filter(tr1,VoiceComsec:M,
 CipherMode(CMCtl))

 Ù Modulate(Encrypt(m2,Key)) = m1))

Notice that communications over VPCtl are used to determine whether the terminal is in the
cipher mode for VP, whereas communications over CMCtl are used for CMP.

5. Prove the Concurrent Restriction Condition,

RVP (tr1 | ̀aVP) Þ RVP (tr1) Ù RCMP(tr1 | ̀aCMP) Þ RCMP(tr1).

If this proof fails, revise the requirements so that RVP depends only on the events in the
alphabet of VP and that RCMP depends only on events in the alphabet of CMP and try
again.

We prove the first conjunct of the Concurrent Restriction Condition; the proof of the
second conjunct proceeds similarly. Since the only place that tr1 is referenced in
Specification 2 of VP is as a parameter to Filter, the first conjunct of the Concurrent
Restriction Condition follows from Theorem 2 below. This proof has the same general
structure as the proof of Theorem 1.

Theorem 2:
 (Filter(tr1, VoiceComsec:M, CipherMode(VPCtl))

= Filter(tr1 | ̀aVP, VoiceComsec:M, CipherMode(VPCtl)))
 Ù (Filter(tr1,RedChan:M, CipherMode(VPCtl))

= Filter(tr1 | ̀aVP, RedChan:M,CipherMode(VPCtl)))

Proof: We prove the first conjunct; the proof of the second conjunct proceeds similarly. By
Lemma 3,
 (VoiceComsec:M Í aVP
 Ù (" tr2. tr2 £ tr1 Þ (CipherMode(VPCtl)(tr2)

= CipherMode(VPCtl)(tr2 | ̀aVP))))
 Þ Filter(tr1 | ̀aVP, VoiceComsec:M, CipherMode(VPCtl))

= Filter(tr1, VoiceComsec:M, CipherMode(VPCtl))
® {Lemma 4, Definitions 17 of aVP}
 Filter(tr1 | ̀aVP, VoiceComsec:M,CipherMode(VPCtl))

= Filter(tr1, VoiceComsec:M,CipherMode(VPCtl))
End of Proof.

6. Attempt to prove the Conjunction Condition,
(RVP (tr1) Ù RCMP(tr1)) Þ RmASVT(tr1).

- 20 -

If successful, continue the tree traversal to the next vertex at step 3. Otherwise, specify the
weakest condition, C, needed to complete the proof.

This step is difficult, partly due to the fact that the proof is dependent on the proper
synchronization of VP and CMP. We derive the necessary synchronization requirement
through an attempt to prove the Conjunction Condition. Analyzing RVP and RCMP of
Specifications 2 and 3 shows that the Conjunction Condition can be deduced from the
following theorem:

Theorem 3: (Filter(tr1, VoiceComsec:M, CipherMode(VPCtl))
 = Filter(tr1,VoiceComsec:M, CipherMode(CMCtl))

 Ù Filter(tr1, BlackChan:M, CipherMode(VPCtl))
 = Filter(tr1, BlackChan:M, CipherMode(CMCtl)))

 Þ ((RVP(tr1) Ù RCMP(tr1)) Þ RmASVT(tr1))

Proof:
 Filter(tr1, VoiceComsec:M, CipherMode(VPCtl))
 = Filter(tr1,VoiceComsec:M, CipherMode(CMCtl))
 Ù Filter(tr1, BlackChan:M, CipherMode(VPCtl))
 = Filter(tr1, BlackChan:M, CipherMode(CMCtl))
 Ù RVP(tr1) Ù RCMP(tr1)
® {Specification 2 of RVP and Specification 3 of RCMP}

 " m1.(VoiceComsec.m1 in Filter(tr1, VoiceComsec:M,
 CipherMode(VPCtl))

 Þ $ m2.(RedChan.m2 in Filter(tr1, RedChan:M,
 CipherMode(VPCtl))

` Ù Analyze(m2) = m1))
 Ù " m1.((BlackChan.m1 in Filter(tr1, BlackChan:M,

 CipherMode(VPCtl))
 Þ $ m2.(VoiceComsec.m2 in Filter(tr1, VoiceComsec:M,

 CipherMode(VPCtl))
 Ù Modulate(Encrypt(m2, Key)) = m1))

® {Calculus}
 " m1.(BlackChan.m1 in Filter(tr1, BlackChan:M,

 CipherMode(VPCtl))
 Þ $ m2.(RedChan.m2 in Filter(tr1, RedChan:M,

 CipherMode(VPCtl))
 Ù Modulate(Encrypt(Analyze(m2), Key)) = m1))

= {Specification 1 of RmASVT}
 RmASVT(tr1)

End of Proof.

Theorem 3 states sufficient conditions for proving the Conjunction Condition.
Provided these conditions are true, when the terminal is in the cipher mode, the origination of
a message transmitted through BlackChan can be traced through CMP from VoiceComsec.
Likewise, the origination of a message transmitted through VoiceComsec can be traced
through VP from RedChan. Unfortunately we cannot prove the antecedent of Theorem 3

- 21 -

without additional information about the valid traces of the mASVT. Therefore, set C equal to
this antecedent.11

7. Describe C as a conjunction of simple conditions in conjunctive normal form. If no
conjunct depends solely on the traces of either VP or CMP then conjoin C to SRmASVT and
continue the tree traversal to the next vertex at step 3. Otherwise, conjoin to RP each
conjunct of C that depends only on the traces of P (for P = VP or P = CMP) and continue
at step 5.

By mathematical induction on tr1 and Definition 14 of Filter, C reduces to the
conjunction of two simpler expressions:

Condition C:
 ((tr1 ¹ < > Ù Last(tr1) Î VoiceComsec:M)
 Þ (CipherMode(VPCtl)(tr1) = CipherMode(CMCtl)(tr1)))
 Ù ((tr1 ¹ < > Ù Last(tr1) Î BlackChan:M)
 Þ (CipherMode(VPCtl)(tr1) = CipherMode(CMCtl)(tr1))).

Recall that CipherMode(ctlch1)(tr1) is true if and only if the terminal is in the cipher mode
after engaging in the sequence of events tr1. The mode is cipher if and only if either the most
recent transmission over ctlch1 was cipher or, if there is no such transmission, the initial
mode is cipher. Since VPCtl and CMCtl are distinct channels, there is no way to determine
the truth of C from only the definition of CipherMode.

The truth of the first conjunct of C depends only on communication over
VoiceComsec, VPCtl, and CMCtl; the truth of the second conjunct depends on
communication over BlackChan, VPCtl, and CMCtl. Since VP must participate in any events
of tr1 that occur in its alphabet and since, by Definitions 17 of aVP,

Lemma 5: {VoiceComsec.m, VPCtl.c, CMCtl.c
 | c Î {cipher, plain}, m Î M} Í aVP,

the truth of the first conjunct depends solely on the traces of VP. Defining R'VP as this
conjunct results in

Definition 18:
 R'VP(tr1) = ((tr1 ¹ < > Ù Last(tr1) Î VoiceComsec:M)

Þ (CipherMode(VPCtl)(tr1)
= CipherMode(CMCtl)(tr1)))

Therefore, we can conjoin R'VP to RVP. Unfortunately, the second conjunct of C does not
depend on the traces of a single component. By Definitions 17, communications over
BlackChan and VPCtl do not occur in the alphabet of any single component. Nevertheless,
since the specification of VP has been extended, we must go back to step 5 and reprove the
Concurrent Restriction Condition for VP.

D. Justifying the Revised Decomposition

During the first attempt to decompose the requirement of mASVT, we proved the
Concurrent Restriction Condition for the original definitions of RCMP and RVP. Conjoining

11 Note that since this instantiation of C is not necessary to establish the truth of the Conjunction Condition, we

cannot guarantee that the set of synchronization requirements derived is minimal.

- 22 -

R'VP to RVP, requires proof that R'VP depends only on the events in the alphabet of VP to re-
establish the truth of the Concurrent Restriction Condition:

Theorem 4: R'VP(tr1 | ̀aVP) Þ R'VP(tr1)

Proof:
 R'VP(tr1 | ̀aVP)
= {Definition 18 of R'VP}

 (tr1 | ̀aVP ¹ < > Ù Last(tr1 | ̀aVP) Î VoiceComsec:M)
 Þ (CipherMode(VPCtl)(tr1 | ̀aVP)
 = CipherMode(CMCtl)(tr1 | ̀aVP)))
® {Definitions 17 of aVP}
 (tr1 ¹ < > Ù Last(tr1) Î VoiceComsec:M)
 Þ (CipherMode(VPCtl)(tr1 | ̀aVP)
 = CipherMode(CMCtl)(tr1 | ̀aVP)))
® {Lemma 4, Definitions 17 of aVP}
 (tr1 ¹ < > Ù Last(tr1) Î VoiceComsec:M)
 Þ (CipherMode(VPCtl)(tr1) = CipherMode(CMCtl)(tr1))
= {Definition 18 of R'VP}
 R'VP(tr1)

End of Proof.

Since RVP has been modified, the next step is to reprove the Conjunction Condition.
Fortunately, these proofs proceed exactly as before except, this time, the proof depends only
on the second conjunct of Condition 1. Since it does not depend on any one component of
the mASVT, the decomposition at this vertex is finished.

E. Analyzing the Final Results

Decomposing Specification 1 of mASVT results in a specification for each component
and a number of synchronization requirements on multiple components. In summary, the
derived component specifications are as follows:

Specification 4: VP sat RVP

RVP(tr1) = (" m1. (VoiceComsec.m1 in Filter(tr1, VoiceComsec:M,

 CipherMode(VPCtl))
 Þ $ m2. (RedChan.m2 in Filter(tr1, RedChan:M,

 CipherMode(VPCtl))
 Ù Analyze(m2) = m1))

 Ù (tr1 ¹ < > Ù Last(tr1) Î VoiceComsec:M)
 Þ (CipherMode(VPCtl)(tr1) = CipherMode(CMCtl)(tr1))

Specification 5: CM sat RCM

RCM(tr1) = ("m1.(ModemComsec.m1 in Filter(tr1,ModemComsec:M,

 CipherMode(CMCtl))
 Þ $ m2. (VoiceComsec.m2 in Filter(tr1, VoiceComsec:M,

 CipherMode(CMCtl))
 Ù Encrypt(m2, Key) = m1))

 Ù (tr1 ¹ < > Ù Last(tr1) Î ModemComsec:M)
 Þ (CipherMode(CMCtl)(tr1) = CipherMode(MPCtl)(tr1))

- 23 -

Specification 6: MP sat RMP

RMP(tr1) = " m1. (BlackChan.m1 in Filter(tr1, BlackChan:M,

 CipherMode(MPCtl))
 Þ $m2.(ModemComsec.m2 in Filter(tr1, ModemComsec:M,

 CipherMode(MPCtl))
Ù Modulate(m2) = m1)).

The first conjunct of RVP in Specification 4, the first conjunct of RCM in Specification 5, and
all of RMP in Specification 6 represent the proper transformation of messages transmitted
through each component when in the cipher mode. Each processor uses its own control
channel for determining whether the terminal is in the cipher mode. At the system level,
however, only VPCtl is used to determine whether the system is in the cipher mode. As
suggested by the analysis of Sections IV-C and IV-D this fact requires that VP and MP satisfy
additional conditions, defined by the second conjuncts of RVP and RCM in Specifications 4 and
5. These conditions were derived during the effort to prove the Conjunction Conditions
during the first and second level decompositions.

The second conjuncts of RVP and RCM are somewhat obscure. Their purpose is to
help ensure that the position of the mode selector dial is seen consistently by all three
processes. A notification of a change in mode for the mASVT requires the synchronized, and
sequential, notification of each of the three component processors over the control channels,
VPCtl, CMCtl, and MPCtl. The second conjuncts form an integral part of the requirement
that the notifications proceed uninterrupted by message transmissions. The second conjunct
of RVP states that every mode change received by VP over VPCtl be sent to CM over CMCtl
before another message is accepted for transmission. Since this is a requirement of VP it is
stated as a part of RVP. Likewise, the second conjunct of RCM states that every value received
by CM over CMCtl be sent to MP over MPCtl before another message is accepted for
transmission. Since this is a requirement of CM it is stated as a part of RCM. MP has no such
responsibility.

Specifications 4 and 5 are not sufficient to ensure that a mode change is not
interrupted. Unfortunately, this cannot be enforced merely by specifying requirements on the
component processes in isolation; two requirements on multiple components are needed:

Requirement 1:
 (ValidTrace(tr1, mASVT) Ù tr1 ¹ < > Ù Last(tr1) Î BlackChan:M)
 Þ (CipherMode(VPCtl)(tr1) = CipherMode(CMCtl)(tr1))

Requirement 2:
 (ValidTrace(tr1, CMP) Ù tr1 ¹ < > Ù Last(tr1) Î BlackChan:M})
 Þ (CipherMode(CMCtl)(tr1) = CipherMode(MPCtl)(tr1)).

These conditions are very similar to the second conjuncts of RVP and RCM. Intuitively, they
state that whenever a message is transmitted by BlackChan, the current mode of the terminal
is cipher if and only if the most recent values transmitted over VPCtl, MPCtl, and CMCtl
were cipher, or, if no values were transmitted over these channels, the terminal began in
cipher mode. The component alphabets given by Definitions 17 imply that neither of these
conditions is the sole responsibility of a single component of the mASVT. Requirements 1

- 24 -

and 2 form the set of synchronization requirements of the mASVT as referenced in the
introduction of this paper.

Although it is outside the scope of this paper to prove the requirements described in
this section, it is interesting to look at them in light of the example functional refinement
presented in the appendix to this paper. Through some analysis of these definitions, the truth
of Specifications 4 through 6, and Requirements 1 and 2, becomes apparent. Proofs of the
component requirements are relatively easy to formalize using the proof methods of the Trace
Model of CSP. Unfortunately, however, when one tries to formalize the proofs of
Requirements 1 and 2, the arguments explode into an extremely large number of cases, even
for this relatively simple example. Future work requires determining methods for practically
dealing with such proofs.

V. Summary and Conclusions
This paper describes and demonstrates a method for formalizing and decomposing

critical requirements of systems using the Trace Model of CSP. The method proceeds
iteratively, until the appropriate requirements for the component processes and the minimal set
of synchronization requirements are found. An extension to the CSP notation, involving
process composition with hidden internal structure, promotes hierarchical system design and
decomposition. A goal of the decomposition process is to minimize the number and
complexity of the synchronization requirements since these are the most difficult to verify in
later system development. We capture these requirements in the simplest possible context and
ensure that each depends on the behavior of at least two component processes. The method
described reduces the problem of assuring that the system meets its critical requirements to the
simpler, although possibly nontrivial, problem that each component meets its derived
requirements and the system satisfies the derived synchronization requirements.

Experience with the mASVT decomposition confirms our belief that the CSP Trace
Model is a valuable formalism for specifying and reasoning about systems and their
requirements. Although the Trace Model is restricted to reasoning about the safety of non-
divergent processes, within this domain the power of trace theory eases the description of
critical properties over less sophisticated models while avoiding the complexities of the more
sophisticated models. For example, the use of separate channel histories, as in the Counter
Model and Gypsy, complicates the statement of relationships between the communication
histories of different channels at specific times during a process's execution. The mASVT's
Red/Black separation requirement is difficult, if not impossible, to specify within this
paradigm due to the need to determine the mode in which the terminal is operating when
messages are transmitted; this determination requires finding out the last value transmitted
over VPCtl for each message transmitted over BlackChan. The Trace Model allows the
statement of such properties by describing process behavior in terms of interleavings of
distinct channel histories. The ability to decompose critical liveness properties of potentially
diverging processes using the more sophisticated models is an area of future research.

Stages of development, subsequent to system decomposition, require methods to
verify sequential component and synchronization requirements. Verifying properties of
sequential components does not present any inherent difficulties. Unfortunately, we have not
yet found a practical approach applicable to nontrivial systems for formally proving the
derived synchronization requirements. Although proof methods for reasoning about global

- 25 -

properties exist within the CSP Trace Model, they are intractable for most real-world
systems. This problem is not unique to the model used here; the other models of CSP
discussed, as well as the proof methods of Gypsy, exhibit these same difficulties. In general,
if it is impossible to derive component process requirements that are sufficient to prove the
system requirements, reasoning about global properties is required. This condition arose in
the decomposition of even the relatively simple mASVT example as discussed in section IV.

The EHDM verification system [8] is proving useful for mechanically checking the
proofs required of the decomposition process. We have encoded within the logic of EHDM
the relevant portion of the CSP Trace Model allowing system architecture and requirements to
be specified. Directed by an informal proof outline derived separately, we can guide EHDM
through the seven-step method. When applied to the mASVT decomposition, EHDM
supplied many of the low-level proof details, e.g., variable instantiations, and, at times,
caught errors in the informal proof. The final EHDM proof provided necessary information
for revising and refining the informal proofs. This paper presents a subset of these revised
proofs.

Although the use of EHDM is beneficial towards checking the integrity of a
decomposition, it is clear that the availability of tools specifically oriented towards specifying
and verifying systems involving concurrency are needed to facilitate the decomposition
process. Verification systems with much of the concurrency model built in would allow the
automation of large portions of the proof process. Alternatively, verification systems that
allow the user to define automatically invoked decision procedures would permit developers
to "program" the theorem prover with CSP-specific proof strategies. Experiences such as
those described in this paper may prove beneficial for identifying useful characteristics of
verification tools and helpful decision procedures for verifying concurrent systems.

The decomposition method proposed in this paper applies to systems with critical
requirements implemented in either hardware or combinations of software and hardware.
Executable languages supporting concurrency [43,44,45] may be useful for prototyping
systems described in CSP [46,47,48], for testing the validity of formalisms specified in the
Trace Model [49], and for continuing the formal verification to lower levels of system design
and implementation [43]. Others are investigating the incorporation of CSP into formal
methods that do not explicitly deal with concurrency such as the Z specification language [4].
If decompositions are taken to a sequential level, more conventional procedural languages
may be used to implement systems in software or as design languages for hardware. Formal
reasoning can proceed in such languages if a trace semantics can derived for programs
written, e.g., [39]. Since our method focuses on requirement decomposition rather than
physical decomposition, it can be used during structural hardware design to decompose
requirements for hardware in a top-down fashion as primitive hardware elements are
interconnected to realize higher-level blocks in a bottom-up fashion.

Decomposing requirements using formal methods enhances the role of testing and
simulation in the design of trustworthy systems. A designer tests a system description to
determine whether it meets the requirements. Complex systems lead to complex test suites.
The greater the complexity of the test suite, the more difficult it is to determine whether the
system meets its requirements. A requirement decomposition allows the designer to break the
test suite for a system into smaller, less complex test suites for its components. This
simplifies the requirements that must be assured and decreases the number of execution paths

- 26 -

that must be traversed. Simplifying the testing process in this way increases the probability
of finding problems that exist in the design. Of course, each synchronization requirement
derived from a requirement decomposition requires testing of those components on which it
depends.

Further work is proceeding along two complementary lines: the application of the
decomposition method to a security-critical portion of a full-scale communication system and
the extension of the method to handle the verification of the component-level and
synchronization requirements. From derived component-level requirements, we expect to
generate and verify implementations of the components using some formally verifiable
programming language such as Gypsy [29] or m-Verdi [50]. Unfortunately, due to the
immature state of formally verifiable languages, the actual source code will likely be written
in a more conventional language with better run-time support. Nevertheless, the verified
implementations will act as low-level functional descriptions from which to derive the source
code. Using strict coding conventions and review procedures this derivation should be fairly
straightforward so as to preserve the formal verification accomplished at the higher levels.

Acknowledgement
The author is grateful to Carl Landwehr, John McLean, Charles Payne, and James Gray of
NRL; to Ken Hayman of the Australian DSTO; and to the referees, for helpful comments on
earlier drafts of this paper.

References
[1] J. Jacob, "Security Specifications" Proc. IEEE Symposium on Security and Privacy,

Oakland, California, pp. 14-23, April 1988.
[2] A.P. Moore, "Investigating Formal Specification and Verification Techniques for

Comsec Software Security," in Proceedings of the 11th National Computer Security
Conference, pp. 129-138, Oct. 1988.

[3] C.T. Sennett, "Tool Support for the Production of High Integrity Software," Royal
Signals Radar Establishment, U. K., Report No. 89005, April 1989.

[4] J.C.P. Woodcock, "Transaction Processing Primitives and CSP," IBM Journal of
Research and Development, Vol. 31, No. 5, September 1987.

[5] C.A.R. Hoare, Communicating Sequential Processes, Prentice-Hall International,
Englewood Cliffs, New Jersey, 1985.

[6] E.R. Olderog and C.A.R. Hoare, "Specification Oriented Semantics for Communicating
Sequential Processes," ACTA Informatica 23, pp. 9-66, 1986.

[7] Hoare, C.A.R., "A Model For Communicating Sequential Processes, in On the
Construction of Programs (R:M. McKeag and A:M. McNaughton, eds.) Cambridge
University Press, pp. 229-243, 1980.

[8] "EHDM Specification and Verification System Version 4.1, User's Guide," Computer
Science Laboratory, SRI International, May 1988.

[9] "EHDM Specification and Verification System: Preliminary Definition of the EHDM
Specification Language," Computer Science Laboratory, SRI International, Jan. 1990.

[10] J. van de Snepscheut, "Trace Theory and VLSI Design," Lecture Notes in Computer
Science 200, Springer-Verlag, Berlin Heidelberg, 1985.

- 27 -

[11] A.P. Moore, "The Specification and Verified Decomposition of an Example
Communication System," Naval Research Laboratory Technical Memorandum 5540-
019:APM:apm, Jan. 1990.

[12] A.P. Moore, "A Method for Decomposing Requirements of Systems of Communicating
Components," Naval Research Laboratory Technical Memorandum 5540-
309:APM:apm, Sep. 1989.

[13] C.A.R. Hoare, "Communicating Sequential Processes," Communications of the ACM,
Vol. 21, pp. 666-677, 1978.

[14] R. Milner, "A Calculus of Communicating Systems," Lecture Notes in Computer
Science 92, Springer-Verlag, Berlin Heidelberg New York, 1980.

[15] R. Milner, Communication and Concurrency, Prentice-Hall International,Englewood
Cliffs, New Jersey, 1989.

[16] S.D. Brookes, "On the Relationship of CCS and CSP," Lecture Notes in Computer
Science 154, 1983.

[17] J. Hooman and W.P. de Roever, "The Quest Goes on: A Survey of Proofsystems for
Partial Correctness of CSP," Lecture Notes in Computer Science 224, Springer-Verlag,
Berlin Heidelberg, 1985.

[18] H. Barringer, "A Survey of Verification Techniques for Parallel Programs," Lecture
Notes in Computer Science 191, Springer-Verlag Berlin Heidelberg, 1985.

[19] C.A.R. Hoare, "A Calculus of Total Correctness for Communicating Processes,"
Science of Computer Programming 1, pp. 49-72, 1981.

[20] C.A.R. Hoare, "Specifications, Programs and Implementations," Technical
Monograph PRG-29, Programming Research Group, Oxford University, 1982.

[21] J. Misra and K:M. Chandy, "Proofs of Networks of Processes," IEEE Transactions on
Software Engineering, SE-7, pp. 417-426, 1981.

[22] Z.C. Chen and C.A.R. Hoare, "Partial Correctness of Communicating Sequential
Processes," Proc. International Conference on Distributed Computing, Paris, April
1981.

[23] N. Francez, D. Lehmann, and A. Pnueli, "A Linear History Semantics for Distributed
Programming," TCS 32, pp. 25-46, 1984.

[24] S.D. Brookes, C.A.R. Hoare, and A.W. Roscoe, "A Theory of Communicating
Sequential Processes," Journal of the Association for Computing Machinery, Vol. 31,
No.3, pp. 560-599, July 1984.

[25] S.D. Brookes and A.W. Roscoe, "An Improved Failures Model for Communicating
Sequential Processes," Lecture Notes in Computer Science 154, pp. 281-305, 1985.

[26] A.W. Roscoe, "A Semantics and Proof System for Communicating Processes," Lecture
Notes in Computer Science 164, pp. 68-85, 1984.

[27] C.A.R. Hoare, "Algebraic Specifications and Proofs for Communicating Sequential
Processes," NATO ASI Series, Vol. F36, Logic of Programming and Calculi of
Discrete Design (M. Broy, ed.), Springer-Verlag, Berlin Heidelberg,1987.

[28] D.I. Good, R. M. Cohen, and J. Keeton-Williams, "Principles of Proving Concurrent
Programs in Gypsy," Institute for Computing Science, The University of Texas at
Austin, Tech. Rep. ICSCA-CMP-15, Jan. 1979.

[29] D.I. Good., R. L. Akers, and L. M. Smith, "Report on Gypsy 2.05," Computational
Logic, Inc., Tech. Rep. #1-b, Jan. 1989.

- 28 -

[30] L. Lamport, "The "Hoare Logic" of Concurrent Programs," ACTA Informatica 14, pp.
21-37, 1980.

[31] S. Owicki and D. Gries, "Verifying Properties of Parallel Programs:An Axiomatic
Approach," Communications of the ACM, Vol. 19, pp. 279-285, May 1976.

[32] G:M. Levin and D. Gries, "A Proof Technique for Communicating Sequential
Processes," ACTA Informatica 15, pp. 281-302, 1981.

[33] K.R. Apt, N. Francez and W.P. de Roever, "A Proof System for Communicating
Sequential Processes," ACM Trans. Program. Lang. Syst., Vol. 2, No.. 3, pp. 359-
385, July 1980.

[34] N. Soundararajan and O.J. Dahl, "Partial Correctness Semantics for Communicating
Sequential Processes," Res. Rep. 66, Institute for Informatics, University of Oslo,
Norway.

[35] J. Zwiers, W.P. de Roever, and P. van Emde Boas, "Compositionality and Concurrent
Networks," Lecture Notes in Computer Science 194, pp. 509-519, 1985.

[36] A.W. Bartussek and D.L. Parnas, "Using Traces to Write Abstract Specifications for
Software Modules," University of North Carolina, Chapel Hill, North Carolina, Report
TR 77-012, Dec. 1977.

[37] D.L. Parnas and Y. Wang, "The Trace Assertion Method of Module Interface
Specification," Queen's University, Kingston, Ontario, Technical Report 89-261,
October 1989.

[38] J. McLean, "A Formal Foundation for the Abstract Specification of Software," Journal
of the Association for Computing Machinery 31(3), pp. 600-627, July 1984.

[39] J. McLean, "Using Trace Specifications for Program Semantics and Verification,"
Naval Research Laboratory Report 9033, April 1987.

[40] D. McCullough, "Noninterference and the Composability of Security Properties," in
Proceedings 1988 Symposium on Security and Privacy, Oakland, CA., IEEE Computer
Society, Apr. 1988.

[41] J.C.P. Woodcock, "Transaction Processing Primitives and CSP," IBM Technical
Journal 31 5, pp. 535-545, Sep. 1987.

[42] J. Jacob, "On the Derivation of Secure Components," in Proceeding 1989 Symposium
on Security and Privacy, Oakland, California, May 1989.

[43] INMOS Ltd, Communicating Process Architecture, Prentice Hall International (UK),
1988.

[44] P.B. Hansen, "The Joyce Language Report," Software Practice and Experience (UK),
Vol. 19, No. 6, pp. 579-592, June 1989.

[45] P.H.J. van Eijk, C.A. Vissers, and M. Diaz, (eds.), The Formal Description Technique
LOTOS, Elsevier-North Holland, 1989.

[46] G.V. Collis and E.J. Kappos, "OCCAM as a Hardware Description Language,"
Software Engineering Journal, pp.213-219, Nov. 1987.

[47] B.J. Curry. "Language based architecture eases system design - III," Computer Design
23(1), 127-136, January 1984.

[48] R.D. Dowsing, "Simulating Hardware Structures in OCCAM," Software &
Microsystems, Vol. 4, No. 4, pp. 77-84, August 1985.

- 29 -

[49] A.W. Roscoe, "Denotational Semantics for Occam," in Proceedings of the NSF/SERC
Workshop on Concurrency, Lecture Notes in Computer Science 197, Springer-Verlag,
July 1984.

[50] D. Craigen, "A Description of m-Verdi," I.P. Sharp Associates Limited Technical
Report TR-87-5420-02, August 1985.

Appendix: A CSP Implementation of the mASVT

The following functional description reflects the operation of the terminal as discussed
in Section IV. Note that the CSP recursive process mX.F(X) represents the process X such

that X = F(X). The choice process (e1 ® P) | (e2 ® Q) represents a process that first
engages in either e1 or e2. If it engages in e1 then it, subsequently, behaves like P; if it
engages in e2 then it, subsequently, behaves like Q.

VP = VPCtl ? mode
 ® mY.(CMCtl ! mode

 ® if mode = cipher
 then mX. ((RedChan ? msg ® VoiceComsec ! Analyze(msg) ® X)

 | VPCtl ? mode ® Y)
 else mX. ((RedChan ? msg ® VoiceModem ! Analyze(msg) ® X)

 | VPCtl ? mode ® Y))

CM = CMCtl ? mode ®
 ® mY.(MPCtl ! mode

 ® if mode = cipher
 then mX. ((VoiceComsec? msg ® ModemComsec ! Encrypt(msg, Key) ® X)

 | CMCtl ? mode ® Y)
 else CMCtl ? mode ® Y)

MP = MPCtl ? mode
 ® mY.(if mode = cipher

 then mX. ((ModemComsec? msg ® BlackChan ! Modulate(msg) ® X
 | MPCtl ? mode ® Y))

 else mX. ((VoiceModem ? msg ® BlackChan ! Modulate(msg) ® X)
 | MPCtl ? mode ® Y)

